
i n nova t i on i n au tomat i on

i nnovat i on i n au tomat i on

www.eta l i q . com

Etaliq Inc. Phone: (613) 241–1385
4B–2548 Sheffield Road Fax: (613) 241–1523
Ottawa, ON K1B 3V7 http://www.etaliq.com

Send, Receive, and Verify!
Part I: Why Isn’t Automation That Simple

A White Paper
by Etaliq Inc.

http://www.etaliq.com

Synopsis 1

Synopsis

Send, Receive, and Verify! The perception is that automation is that
easy, or at least it should be. Telecommunications manufacturers and
providers use automation to verify the operation of their products
and systems prior to customer release or production implementa-
tion. This document describes the predominant system of choice
for telecommunications automation systems and many of the pro-
ductivity challenges included in its selection, implementation, and
architecture.

The vast majority of these telecommunications automation systems
are built in-house. The preferred tools are Tcl/Expect, Perl, and regu-
lar expression scripting languages which are most often implemented
on a Unix workstation or server with additional shell scripting en-
vironment setup utilities. Source code version control and change
management is most often accomplished with CVS or RCS. These
scripting languages and utilities, which are all 1980’s vintage tools,
have undergone very few of the productivity enhancements that the
product developer IDE tools have seen in recent years. They are
merely the starting point of what can only be described as a patch-
work system of languages, utilities, tools, environment settings, and
libraries, cobbled together over a number of years.

There have been a rash of acquisitions in recent years with large tech-
nology and tools companies acquiring test automation tool suppliers
such as Rational (IBM), Mercury (HP), and Segue (Borland), to name
a few. To date none have been able to provide a product that meets
the requirements for a telecommunications automation system.

Over the last few years, several new companies have arisen attempt-
ing to solve some of these challenges; many of them by putting GUI
front ends on these existing utilities, as well as adding a few produc-
tivity functions to reduce the time required to build and maintain
simple scripts. Upon review of the architectures and script building
capabilities of these newer tools, many of the productivity challenges
remain un-addressed, while using them in scaled stress and perfor-
mance testing (more than 100’s or 1,000’s of interfaces and sessions
across a series of nodes) remains unattainable.

White Paper: Send, Receive, and Verify! – Part I: Why Isn’t Automation That Simple
Copyright© 2009 by Etaliq Inc.

Synopsis 2

It is clear that what is needed is a new approach: an architected
solution that no longer requires that Automation Engineers be used
in tandem with Subject Matter Expert telecom Test Engineers to im-
plement and maintain automated tests and scripts. A new solution
should assist in ensuring that the test code matches the descriptive
Test Plan objectives and procedures. Complex multi-device commu-
nication, simplified “Send, Receive, and Verify!” functions, as well
as procedures for testing with 1,000’s of connections and interfaces
must be integrated and easy to use. It must more efficiently use
lab resources and enhance the log review and failure cause analysis
processes, both during test creation and regression execution. This
new tool must also include integrated management reporting func-
tions to summarize results and resource usage. It should no longer
be necessary to have highly qualified engineers entering zeros and
ones in spreadsheets. Summarized results must be integrated and
customizable for management reporting. For example, reporting
globally from run to run, day to day, week to week, providing a view
of the progress of a project. These same results must be filterable by
project, sub-project, software version, system component or category,
category of test, and category of hardware and/or technology.

Simplify. . .
Simplify. . .

Simplify. . .
Send, Receive, and Verify!

It should be that easy.

This document describes in significant detail, with examples, an
overview of the testing cycle while highlighting the inefficiencies,
trials, and tribulations of the current telecom automation systems.
The specific examples are drawn from the experiences of the writers
as witnessed in both manufacturing and provider production and lab
facilities.

Watch for part II of this document titled “Automation is
That Easy with ETA.” It describes solutions to most of the

challenges identified herein as well as a series of
productivity enhancements you won’t want to miss.

White Paper: Send, Receive, and Verify! – Part I: Why Isn’t Automation That Simple
Copyright© 2009 by Etaliq Inc.

Challenges 3

Challenges

Test Cycle Overview

The testing cycle begins with a review, by a senior Subject Matter
Expert (SME) Verification Engineer, of the customer and system re-
quirements documents. This engineer in turn creates a Project Test-
ing Charter/Architecture document which provides an overview of
all testing requirements for the new product or system. This docu-
ment includes specifications for lab setups, an overview of Test Plans
to be created, performance and stress test requirements, a list of re-
gression tests and scripts to be executed during the project to ensure
unaffected sub-systems are indeed unaffected, and an initial estimate
of required testing resources and timelines. This Test Architecture
document is then used by other Project SME’s to build lab setups
and write detailed Test Plans and Cases. Of these Test Cases, 20 to 40
percent are then selected for automation.

Test Plan documents are reviewed by developers, testers, and other
project participants in accordance with ISO processes. Test labs are
prepared in advance, so that upon receipt of early product code,
manual feature testing begins. Automation of the selected Test Cases
begins shortly after the product gains a reasonable level of stability,
as verified by manual testing. Problems are documented and Test
Case results are tallied in order to represent the progress of testing
and the quality of the product to management. When feature testing
completes and quality objectives are in sight, the product proceeds
through stress, performance, and regression testing, then to early
field trial, and finally to general customer release. All documents,
results, logs, and summarizations are filed in compliance with ISO
standards. Automated scripts are made production ready for regres-
sion purposes and a project post mortem follows.

Post mortem analysis documents identify and describe the project
successes and failures, which most often result in modifications to be
used for subsequent projects.

White Paper: Send, Receive, and Verify! – Part I: Why Isn’t Automation That Simple
Copyright© 2009 by Etaliq Inc.

Challenges 4

Test Plan/Case Documented Requirements
Vs Test Script Implementation

Often, an audit of a selection of the new automated scripts versus the
Test Plan requirements is undertaken during the post mortem phase
of the project. This audit periodically includes a review of some of
existing regression scripts, used during the project. These scripts
are also reviewed from a script content vs Test Case requirements
perspective.

Results of these audits have been astounding. Post mortem docu-
mentation has shown that up to 45% of the Automation Engineer
(AE) written new scripts did not meet the objectives defined within
the SME written Test Plans and Cases. Results for regression scripts
were even more disturbing: where some of these, as well, no longer
met the documented Test Case objectives. Here are some examples.

Scripts that had undergone changes during normal execution and
maintenance, no longer met the original SME written objectives for
the Test Case. Root cause analysis most often showed that Automa-
tion Engineering and regression test maintenance staff did, in fact,
to the best of their ability, implement procedures that performed the
steps and objectives defined by the SME. The cause of the mismatch
was traced down to a lack of expertise on the part of the automation
and regression staff when interpreting and converting SME written
steps into automation code.

Other cases showed that modifications to existing library procedures
to meet the requirements of new tests, had negatively affected the
operation of other production regression scripts. These backward
compatibility issues only came to light during subsequent production
regression runs resulting in the waste of valuable lab execution and
regression engineer research time.

Still, in others, some of the SME written procedures within Test Cases,
were slightly modified in order to reduce automation effort and keep
on schedule. These changes were deemed by senior automation staff
to have little or no effect on the script meeting original test objectives.
Again this mismatch was traced to a lack of expertise on the part of
the automation staff where their lack of in-depth product and feature
knowledge contributed to the error.

White Paper: Send, Receive, and Verify! – Part I: Why Isn’t Automation That Simple
Copyright© 2009 by Etaliq Inc.

Challenges 5

Occasionally, existing library procedures were selected and used
within the new Test Cases based on their library contained descrip-
tions. While the description seemed to match the written requirement
in the Test Case, no additional research was done to ensure an exact
match. This particular mismatch was traced to out-dated function
descriptions contained in production libraries.

All of these scenarios apply to both new and regression scripts to
varying degrees. In the case of regression scripts, the older the script
was the less likely it was to have accurately met the objectives in the
original Test Case.

There appears to be a fundamental flaw in the operation of test and
automation organizations. In nearly all cases, SME Test Engineers
and Automation Engineers are not the same individual. Test scripts
are seldom, if ever, audited by SME Test Engineers. Scripts rarely
remain in step with documented test requirements. The written Test
Plans and Cases are reviewed by the Development Engineers (DE)
who ensures that the SME’s have properly defined tests that com-
pletely verify the correct operation of the product. Yet, the scripts,
library procedures, and test log results are not reviewed by any of
the Test or Development Engineers, thereby creating a possibility of
mismatch.

During Test Automation audits, very often the code no
longer matches the Test Plan objectives that it was

designed to test.

This can result in false passes, and a false sense of
security.

Scripting environments today are implemented as a series of libraries
of procedures that are modified, as required, during new feature and
regression test cycles, for maintenance purposes. These modifica-
tions proceed without review of, or regard for, the original SME
written Test Cases. Sloppy and/or misguided modification to the
procedures and descriptions in these libraries cause many failures in
both regression and project automation runs.

White Paper: Send, Receive, and Verify! – Part I: Why Isn’t Automation That Simple
Copyright© 2009 by Etaliq Inc.

Challenges 6

SME written Test Plans and Cases are infrequently designed with
automation in mind. For example, a SME will write a step in a pro-
cedure stating, “Verify that all affected L2VPN connections return
to an up state, with statistics counters increasing verifying that traf-
fic flow resumes.” Automation environments are written such that
this simple step in the Test Case requires as many as seven or eight
sub-steps of automation code to complete. These sub-steps will be
repeated within a loop for all affected L2VPN connections in the Test
Case, and followed by traffic analyzer statistics verification. The sub-
steps required to accomplish this are as follows: 1) Loop on a list of
all affected L2VPN connections; 2) Perform the required show com-
mands for state and statistics verification; 3) Parse the output of each
show command and retain the values for verification; 4) Verify the
state portions of the L2VPN connection in these show commands
ensuring that all of the appropriate local and remote state values
therein, show them to be “up”; 5) Repeat the show command for
statistics; 6) Parse these statistics and retain them in a second series
values for verification; 7) Loop on all of the appropriate statistics that
verify that the values are either increasing as required, or not increas-
ing as appropriate; 8) Upon completion of all L2VPN connections,
retrieve and verify the traffic generator analyzer statistics.

Upon review of the type and amount of code necessary
to accomplish a relatively simple step in a Test Case, the

solution becomes obvious:
Simplify. . .

Simplify. . .
Simplify. . .

Send, Receive, and Verify!
It should be that easy.

It is obvious that a plethora of challenges exist in writing and main-
taining scripted Test Cases that continue to meet the objectives de-
fined by the SME Test Engineer. Reducing complications in script
coding would contribute heavily to greater efficiency and reduced
maintenance. Simplified “Send, Receive, and Verify!” functions are
required. Simplifying this code creation process would allow many
more scripts to be created earlier in the test cycle. If the new test code

White Paper: Send, Receive, and Verify! – Part I: Why Isn’t Automation That Simple
Copyright© 2009 by Etaliq Inc.

Challenges 7

could be tested and verified prior to product availability, automation
would be available early in the test cycle rather than at the end. Also,
more lab resources would be available for test executions during the
test cycle.

Test Cycle and Automation: Lab Resources

Today, test automation environments and tools require that the prod-
uct to be tested be available, in a near stable form, in order to verify the
operation of the test scripts. With time-to-market being a primary key
to success in the telecom market, opposed by continued pressure to
reduce costs (both human and lab), there is limited flexibility during
a test cycle. Resources to repeatedly test a significant portion of the
Test Cases, either manual or automated, are unavailable. Resources
to automate more Test Cases are also unavailable.

This limited flexibility contributes greatly to even more challenges
and inefficiencies in today’s overall test productivity. A test cycle
often includes hundreds or even a thousand Test Cases for execution.
Of these, only a small portion (20–40%), are selected for automation.
Valuable lab resources are used to create and verify automated Test
Cases during the test cycle rather than having a set of pre-built,
pre-verified automated cases ready at the start. In addition, even if
more Test Cases were automated, more regression resources would
be required to manage the job and schedule execution parameters,
and more lab resources would need to be available. The reality is
that there are not enough lab resources available to repeatedly run all
of the automated Test Cases, either at the beginning or end of a test
cycle, or for regression purposes.

The requirement to have the product available to verify automation
means that new and modified test scripts are built and verified only
during a test cycle. It is due to this fact that automation is predom-
inantly used at the end of a test cycle and onward for regression
purposes rather than at the beginning, where continued use could
contribute to more rapid achievement of quality objectives and re-
duction in overall test cycle duration.

It is highly desirable to create more automated Test
Cases, if they can be used efficiently during a test cycle

and afterwards.

White Paper: Send, Receive, and Verify! – Part I: Why Isn’t Automation That Simple
Copyright© 2009 by Etaliq Inc.

Challenges 8

During a test cycle, lack of new available automation and human
resource constraint means that only Test Cases affected by bug fixes
are repeated. This, combined with the fact that not all Test Cases are
automated—and even if they were automated there is not enough
time to run them—means that many of the Test Cases are never
repeated, ever!

It is highly desirable to execute validated automation
much earlier in the test cycle. If only it were possible!

It is obvious that a simplified coding strategy and some form of ability
to validate scripts prior to product availability would result in usable
automation much earlier in the test cycle. A side affect would be that
additional hardware resources would be freed up for testing rather
than reserved for script creation and verification. Additionally, more
efficient management of execution scheduling profiles would enable
more tests to be run more frequently.

If test automation code could be built and validated
prior to the availability of newly developed product,
then: 1) Valuable lab resources could be freed up to
perform more tests during the test cycle, rather than

only at the end; 2) More automation could be available
to test more frequently.

Today’s Automation Infrastructure Inefficiencies

Automation infrastructures implemented with 1980’s vintage script-
ing tools, have seen few to none of the enhancements that products
used for product development or operational monitoring have ex-
perienced over the last 30 years. Tools today for development and
operations are a far cry from those used in the 1980’s, yet test au-
tomation infrastructures in the engineering disciplines for Telecom-
munications, Defense, Aerospace, and Medical remain essentially
unchanged.

White Paper: Send, Receive, and Verify! – Part I: Why Isn’t Automation That Simple
Copyright© 2009 by Etaliq Inc.

Challenges 9

Inefficiencies, in these test automation infrastructures, have far reach-
ing effects in all aspects of product engineering development. This
includes time-to-market, product quality, human and hardware re-
source costs, not to mention customer found defects and corporate
reputation.

These infrastructures are implemented with a mishmash of the fol-
lowing: Unix shell script environment variable files and settings,
execution or job file parameter files, lab device related communi-
cation and hardware setup information files, Tcl/Perl scripting en-
vironment initialization libraries and functions, communications li-
brary functions for Expect/Perl, a reporting library with a series of
functions for creating log and report files, a multitude of specific
function libraries and procedures for configuring/parsing/verifying
various sub-systems within the product being tested, and one or
more libraries for testing device specific functions including traffic
generators/analyzers.

In many of the medium to large test automation environments, var-
ious files/libraries/procedures and functions were created in the mid
to late 1980’s and have continued to grow unabated. In a couple of
cases, where the test automation infrastructures were being audited,
more than 250K lines of code were being loaded to run an individual
script with an initialization time of more than 7 minutes. That is to
say, that prior to running the first script related line of code, 7 minutes
of wasted lab time was consumed. The bloat within these systems has
a dramatic affect on lab resource usage, not to mention the amount of
time spent by an Engineer when developing, debugging or running
a script for regression purposes.

Systems have grown to well beyond a bloated state.
System initialization and per-command execution times

must be reduced, resulting in more efficient use of all
resources, lab and human.

Today’s test automation infrastructures, implemented with 1980’s
vintage scripting tools, lack many of the efficiencies that would enable
them to run more quickly and achieve more test results in a shorter
period of time. As an example, one of the most prevalent inefficiencies

White Paper: Send, Receive, and Verify! – Part I: Why Isn’t Automation That Simple
Copyright© 2009 by Etaliq Inc.

Challenges 10

in today’s infrastructures is that they do not provide a quick and easy
to use “Send, Receive, and Verify!” capability. That is, existing
infrastructures must implement a seven or eight sub-step process
to achieve a simple test step within a Test Case. See the example
above showing the sub-steps necessary to “verify that all affected
L2VPN connections return to an up state, with statistics counters
increasing verifying that traffic flow resumes.” This means that the
time required to develop a correctly operating script is much longer
and more complex than it needs to be.

Simplify. . .
Simplify. . .

Simplify. . .
Send, Receive, and Verify!

Today’s automation infrastructures seldom include the ability to ver-
ify script integrity through a simple compilation and syntax check
functionality. The 1980’s vintage scripting tools require that Automa-
tion Engineers use valuable lab resources to actually run the script to
identify even the simplest of coding errors. Coding errors as simple
as undefined variables or misaligned quotes are only discovered dur-
ing execution. These scripting tools are “run to completion” batch
oriented programming systems where, upon discovery of individual
errors, they abort without assisting in identifying even two errors at
a time. To identify each individual error, the Automation Engineer
must run the script, repeatedly, until all coding errors are found and
corrected. After correcting all of the syntax-related errors, they must
continue running it to identify and remove all of the, more complex,
logic errors. When feature or product changes require it, enhance-
ments or fixes to existing library functions and procedures must be
done with such care as to not affect other scripts and procedures that
use them. The problem is that the library procedures often call other
library procedures, making it near impossible to know which scripts
are affected by a library change. Again, all of these contribute heav-
ily to an inefficient use of valuable resources, both human and lab
hardware, during a test cycle and beyond.

Systems should include pre-execution compilation and
syntax verification in order to allow more efficient use of

all resources, both lab and human.

White Paper: Send, Receive, and Verify! – Part I: Why Isn’t Automation That Simple
Copyright© 2009 by Etaliq Inc.

Challenges 11

Another of the severely unproductive components of automation in-
frastructures today is related to the logs and reports created during
execution. Log files created during execution include; a programmed
log output file where script progress and errors are noted, console log
files for each lab device, summary logs for Pass/Fail results and ex-
ecution information, and a more detailed log of test progress where
information about test steps, library procedures, debugging and se-
lect device output are logged. As many as 10 to 20 individual files are
created for each execution. The problems here are; none of these files
are linked to each other, output to each is generally free form text,
little structure or built-in ease-of-use information is included, errors,
warnings and problems are in no way linked to the source script or
library function executed to generate them, and, finally, each Au-
tomation Engineer often has total autonomy in deciding what and
when information gets logged to each file. Regression operations
staff requires several days or weeks of familiarization time with the
log output and script coding, prior to being assigned production op-
erator for that script. Test executions that run 20 tests create logs that
are often 10 MB or more of raw text data, spread over a set of 10
to 20 files. Without the files linked to each other and to the origin
source code, finding an error 3 MB into the detailed log file, for ex-
ample, causes great difficulty in determining which test within the
script was being executed at the time of error. If the error seems to be
linked to a function call, it is difficult to know which function, within
which library, was called from within which test, for what reason.
Log files, linked to each other and to the source files would make it
infinitely more productive to do problem determination. All this to
say that, the log review mechanisms, built into existing automation
infrastructures, leaves much to be desired.

System log files should be integrated and structured to
more quickly identify failure points. Unstructured

output files, that are not linked to each other nor to the
origin source code, are an inefficient use of automation

resources.

Why can’t Automation be as simple as
Send, Receive, and Verify!

White Paper: Send, Receive, and Verify! – Part I: Why Isn’t Automation That Simple
Copyright© 2009 by Etaliq Inc.

Challenges 12

System Architecture:
Test Automation Supporting Tools

Additional tools are required to efficiently run a fully architected test
automation solution. At a minimum the system must include an
execution scheduling and prioritization mechanism, a summarized
results reporting database, node usage tracking and reservation fea-
tures, log output review, compression, storage and retrieval func-
tions, and a source tracking mechanism for Test Plans, Test Cases,
execution parameter files, node definitions and inventory informa-
tion.

These complimentary tools are also created and maintained in-house,
using non-integrated applications, built with yet another set of pro-
gramming tools (often Java, or HTML), each with its’ own non-
integrated back-end database, with even more tools being added
on an as-needed basis. The ideal scenario would be a fully integrated
and thoughtfully architected Test Automation Infrastructure that in-
cludes all of these complimentary tools. The reality is, however, that
integrating these in-house developed systems is not a priority.

In the last couple of years, some users have begun migrating to com-
mercial off-the-shelf products that do specific parts of an automated
solution. Use of these tools is catching on to reduce in-house tool
maintenance and development costs.

A fully integrated and architected test automation
system, including Dispatcher and Execution Engine,

Resource Reservation and Scheduling, efficient
Execution Log Reporting, flexible File Management,
customizable Summarized Pass/Fail and Node Usage
Reporting, with interfaces to various other test and

inventory management tools, is required.

White Paper: Send, Receive, and Verify! – Part I: Why Isn’t Automation That Simple
Copyright© 2009 by Etaliq Inc.

Conclusion 13

Conclusion

A truly innovative test automation infrastructure solution would pro-
vide the ability for SME Test Engineers to automate themselves, with-
out the need to team up with Automation Engineers. This would
eliminate miscommunication between the Test and Automation En-
gineers, resulting in less scripts that do not meet test objectives and
many less false pass automated Test Cases. Merging the Test Plans
with the automation code using this easy to use infrastructure would
dramatically reduce mismatches and false passes. A simple to use
system based on the principle to “Send, Receive, and Verify!” would
contribute to increased accuracy, reduced time to create and execute,
and ultimately to a highly efficient automation operation. Devel-
opment engineers could review the automation at the same time as
they review the Test Plan, thereby extending ISO processes into the
automation realm, again contributing to increased accuracy.

An ability to verify Test Code validity prior to product availability
would dramatically increase the usefulness of automation. The test
code would be available much earlier in the test cycle, dramatically
reducing the amount of lab resources used to verify automation code
during a critical phase of every project.

An integrated compiler and syntax checker would eliminate much
of the problem determination time during new test development
and existing test maintenance, by not wasting time using valuable
lab resources. In addition, a truly innovative test automation solu-
tion could provide the ability to verify the syntax and the operation
of newly developed automated tests, long before the product to be
tested is delivered.

A fully integrated flexible smart scheduler would optimize the use of
lab resources and make it possible to run more tests, more frequently.
The node usage portion of this scheduling system would document
resource usage and assist in identifying and rectifying inefficiencies.

Full integration of all the environment setup, device definition and
inventory, tool setup and initialization, and all of the various library
and procedure files would dramatically reduce the time to create,
maintain, and run automated tests. This, in combination with an

White Paper: Send, Receive, and Verify! – Part I: Why Isn’t Automation That Simple
Copyright© 2009 by Etaliq Inc.

Conclusion 14

optimized automation infrastructure, would mean that more tests
could be run, more frequently.

Structured logs and reports, that are linked to each other as well as
to the origin source files, would dramatically reduce resource efforts
during problem determination; making all resources more produc-
tive. This also provides a side benefit where customer-reported fail-
ures can be traced to actual log and source files that should have
detected the failure.

An integrated, customizable, summary reporting mechanism would
mean that more detailed and accurate statistics about product, fea-
ture, or individual project quality are available at the touch of a
button.

To date, tools like IBM Rational, HP Mercury, Borland Segue, and
others, have been unable to break into this market where complex-
ity rules. At last count, more than 100 companies claim to provide,
meet or exceed some or all of the requirements to operate an efficient
automation infrastructure for this environment. Additional evidence
can be found in the number of patent submissions related to test
automation being received by both International and U.S. Patent Of-
fices. This market still searches for a viable solution even after 30
years of evolution in the development, test and operation tools field.

When looking to a new automation infrastructure tool, narrowing
the field of viable alternatives is fairly simple. Ask them for an exam-
ple performance, stress and scalability test. Define for them a fairly
complex lab setup with 4 or more nodes, each having multiple op-
erator sessions, and all physically interfaced to each other. Request
an example Test Case with code to verify 1,000 interfaces of varying
classifications, with a homogeneous L2VPN configuration and static
routing. Include a single traffic generation stream for statistics ver-
ification, and “verify that all affected L2VPN connections return to
an up state, with statistics counters increasing verifying that traffic
flow resumes.” This will reveal the time to create a complex test, the
time to run such a test, and the lab resource usage required. This will
eliminate all but the serious players. Of those that remain, ask that
the test be run without connecting to the lab devices, as though they
were building a set of tests for a product that is not yet available for
testing.

White Paper: Send, Receive, and Verify! – Part I: Why Isn’t Automation That Simple
Copyright© 2009 by Etaliq Inc.

Conclusion 15

Any vendor of test automation infrastructure products must provide
a tool that addresses all of these problems. Additional productivity
features should also be present and include the ability to integrate
existing scripting facilities as well as provide value-added functions
for development, execution, log review and reporting. To simply put
a pretty GUI front-end on an existing Tcl/Expect/Perl automation
infrastructure and provide the ability to automate simple tests or
tasks is not enough.

Test organizations that address all of these issues will attain the fol-
lowing results: increased test resource efficiency, reduced time-to-
market, higher quality targets achieved faster and earlier, reduced
customer-found defects and, ultimately, positive contributions to cor-
porate reputation.

For a solution to all of these identified issues and many
more, visit http://www.etaliq.com .

White Paper: Send, Receive, and Verify! – Part I: Why Isn’t Automation That Simple
Copyright© 2009 by Etaliq Inc.

http://www.etaliq.com

Conclusion 16

White Paper: Send, Receive, and Verify! – Part I: Why Isn’t Automation That Simple
Copyright© 2009 by Etaliq Inc.

	Synopsis
	Challenges
	Test Cycle Overview
	Test Plan/Case Documented Requirements Vs Test Script Implementation
	Test Cycle and Automation: Lab Resources
	Today's Automation Infrastructure Inefficiencies
	System Architecture: Test Automation Supporting Tools

	Conclusion

